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operators, in this case, the divergence =? and the gra-
dient =:A finite-difference algorithm for the numerical solution of diffu-

sion problems in strongly heterogeneous and nonisotropic media
is constructed for logically rectangular grids. The performance of
this algorithm is comparable to other algorithms for problems with a

­u
­t

5 = · K =u 1 f. (1.1)
smooth coefficients and regular grids, and it is superior for problems
with rough coefficients and/or skewed grids. The algorithm is
derived using the support-operators method, which constructs The diffusion equation (1.1) can be used to describe heat
discrete analogs of the divergence and flux operator that satisfy processes, general diffusion processes [22], and flowsdiscrete analogs of the important integral identities relating the

through porous media [36, 7, 5], where problems of thecontinuum operators. This paper gives the first application of this
method to the solution of diffusion problems in heterogeneous an generality considered here commonly occur. In the case
nonisotropic media. of heat diffusion, u is the temperature, K is the conductivity

The support-operators method forces the discrete analog of matrix or tensor, a 5 cr . 0, where c is the heat capacity,
the flux operator to be the negative adjoint of the discrete diver-

r is the density, and f is the density of the sources or sinks.gence in an inner product weighted by the conductivity, as in the
The operator =? K = is called the diffusion operator anddifferential case. Once this is accomplished, many other important

properties follow; for example, the scheme is conservative and is the Laplacian when K is the identity.
the discrete analog of the variable material Laplacian is symmetric Equation (1.1) holds in some planar region V and in
and negative definite. In addition, on any grid, the discrete diver- this region it is assumed that a is uniformly bounded above
gence is zero on constant vectors and the discrete flux operator

and below by some positive constants. It is not assumedis exact for linear functions in case when K is piecewise constant.
that K is continuous; K may have a finite number of jumpMoreover, the discrete gradient’s null space is the constant func-

tions, just as in the continuum. Because the algorithm is flux discontinuities. The main results in this paper are for the
based, it has twice as many unknowns as more standard algo- case of diagonal conductivity K 5 kI, where it is assumed
rithms. However, the matrices that need to be inverted are sym- that k has uniform upper and lower bounds in V, but much
metric and positive definite, so the most powerful linear solvers

of the preliminary discussion is carried out for generalcan be applied. Also, the scheme is second-order accurate so,
symmetric K whose eigenvalues have uniform upper andall things considered, it is efficient. For rectangular grids, the

discrete operators reduce to well-known discrete operators lower bounds in V (see [13] for an extensive discussion of
and the treatment of discontinuous conductivity coefficients in the nondiagonal case).
the case of isotropic media is equivalent to the well-known The flux vector w plays an important role in the numeri-
harmonic-averaging procedure. Comparison with standard

cal method to be derived, so it is introduced and used toschemes is presented. Numerical examples validate advantage
write the diffusion Equation (1.1) as a first-order system:of new method. Q 1996 Academic Press, Inc.

a
­u
­t

5 2= · w 1 f, w 5 2K =u. (1.2)
1. INTRODUCTION

The main goal of this paper is the description and investi- This is the flux form of diffusion equation that is commonly
used in the mixed finite-element method [7, 38] and is agation of a new finite-difference algorithm for solving diffu-

sion equations with rough coefficients on general logically natural form to use in the case of discontinuous K. In this
paper, the support-operators method is extended so thatrectangular grids. The algorithm is derived using the

method of support operators [10, 30, 31], which requires the flux operator K =, rather than just the gradient =, is
used as a main invariant operator. This is particularly im-that the diffusion equation be written in terms of invariant
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portant for the case of discontinuous coefficients and is It is important to note that all of the discrete operators
are invariantly defined; that is, the definitions contain onlyclosely related to the well-known [24, 36] harmonic averag-

ing of coefficients commonly used for such problems. coordinate invariant quantities like volumes, areas, and
angles. This means that the discrete operators can be usedThe boundary conditions on ­V are chosen to be of

general mixed or Robin type, in any coordinate system by simply changing the formulas
for these geometric quantities.

Once the basic setup for the support-operators methodb(K =u, n) 1 au 5 c, (1.3)
has been established, it is possible to use discrete analogs of
continuum operator identities to show that the discretizedwhere a, b, and c are given smooth functions on ­V, n is
problem shares many important properties of the originalthe unit outward normal to ­V, and (?,?) is the standard
continuum problem and, because of this, the differencescalar product of vectors. Only problems with solutions
scheme is called mimetic [12, 30]. For example, the differ-that are bounded in time are considered, so it is assumed
ence scheme is conservative, and the discrete analog ofthat ab # 0. Using the flux vector, the boundary condition
2= · K = is symmetric and positive definite. Another im-can be written
portant property is that the discrete divergence is equal to
zero on constant vectors and the discrete flux operator isb(w, n) 1 au 5 c. (1.4)
zero on a function if and only if the function is constant.
Moreover, the gradient operator applied to a linear func-

Also, the standard initial condition, u 5 u0 at t 5 0, is used. tion is a constant vector, which implies that the discrete
We are particularly interested in solving problems on Laplacian is exact on linear functions. The fact that only

grids of the type that appear in Lagrangian fluid dynamics constants are in the null space of the flux operator is partic-
codes; that is, the grids are logically rectangular, which ularly important because, for schemes that do not satisfy
means that, in two dimensions, the grids points can be this property, the highest-frequency mode on the grid is
written as x(i, j), y(i, j), 1 # i # M, 1 # j # N, for typically in the null space of the discrete flux operator, and
some positive M and N. Lagrangian grids are typically not then a noise filter is required, as in Margolin [21].
smooth because nodes of the grid are moving with the To consider general boundary conditions, the divergence
fluid. In 1992, Morel, Dendy, Hall, and White in [22] give operator is extended to the boundary as the operator which
a scheme that is very robust and which they claim is better gives the normal component of a vector. Now, if the defini-
than all other known schemes compatible with Lagrangian tion of the inner product for functions is extended to in-
hydrodynamics codes. One main result of this paper is that clude a boundary integral of the functions, then the approx-
the performance of the algorithm presented here is as good imation of the boundary conditions is made consistent with
as the Morel algorithm on smooth grids, and it is superior the approximation in the interior. This leads to the finite-
on rough grids. In addition, the new algorithm performs difference scheme, where the discrete boundary conditions
exceptionally well on problems with discontinuous coeffi- do not destroy the symmetry and positive definiteness of
cients. The new algorithm has some additional advantages. the discrete analog of the operator 2= · K =.
For example, the linear equations that appear in the algo- The basic discretization uses cell-centered values for the
rithm always have a symmetric and positive definite coeffi- solution u and the parameters in the differential equation:
cient matrix. f, a, and K, which is consistent with standard Lagrangian

codes. The fluxes are discretized using components which
1.1. Discussion and Background

are projections onto the normals to the cell sides and are
located at the centers of the cell sides. These componentsThe finite-difference schemes are constructed using the

support-operators method (see [10, 30, 31]), which is a are chosen because they are continuous on the interface
between two different materials, and as usual in Lagran-method for constructing discrete analogs of invariant first-

order differential operators like the divergence and gradi- gian gas dynamics, it is assumed that the internal boundary
between different materials consists of cell sides.ent. The main ideas behind this method is to require that

the operators satisfy some discrete analogs of the well- The discretization of the fluxes leads to a so-called
compact approximation of the equation for the flux (1.2)known integral identities that relate the differential opera-

tors to their adjoints. The integral identities are easily de- (see, for example, [17]). Usually, compact finite-difference
schemes are used to obtain high-order approximations torived from the divergence theorem and are closely related

to conservation laws for the initial boundary-value problem differential operators. Here the compact differencing is
critical for obtaining the mimetic properties. As is usualgiven by (1.1) and (1.3). We note that the terminology

support-operators method is not a particularly good transla- for compact differencing, the discrete analog of the gradi-
ent will not be local. That is, the matrix corresponding totion of the original Russian; perhaps, basic or reference

operators would be better. the discrete gradient is not banded. However, this matrix
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is the inverse of a banded matrix times a banded matrix, important to compute them accurately. In the case of
smooth grids and conductivity, there does not seem to bejust like for standard compact differences. In the case of

an orthogonal grid, the discrete gradient becomes a local any overall advantage to the flux-based method. However,
in the case of rough grids or rough conductivity, the flux-operator.

There are two good solution strategies for the discrete based methods produce more accurate fluxes [6].
The nicest grids used in this study are generated usingequations. A discrete analog of the flux form of the diffu-

sion equation (1.2) will be a system of two equations for smooth mappings, so all of the cells are convex and look
like mildly distorted rectangles. The nicest rough grids usedtwo unknowns, the discrete temperature and the discrete

fluxes. Now eliminate one of the unknowns between the are generated from a simple uniform grid by randomly
moving the node by a small amount, but so that all thetwo equations. If the fluxes are eliminated, then a discret-

ized diffusion equation for the temperature is obtained, cells are still convex. The next worse grids contain a few
too many nonconvex cells. No grids with self-intersectingwhile if the temperature is eliminated, a discrete equa-

tion for the fluxes is obtained. For both approaches, the cells are used, but if the signed area of the cells are all
positive, the method will still work. The method is verysupport-operators method produces a system of linear

equations determined by a symmetric positive-definite robust for grids with convex cells, no matter how rough
the grids. For grids with nonconvex cells, the only difficultyoperator.

For the temperature-based algorithm, the operator for is that the iterative matrix solver may not converge. A
modified algorithm that is less accurate but more robustthe linear system is nonlocal, but can be represented as a

product of a local operator and the inverse of a local opera- is introduced to compensate for this problem. In fact, the
modified algorithm should be robust even for grids withtor, so it is possible to efficiently compute the product of

a nonlocal operator times a vector. This can be used as the slightly self-intersecting cells. The coefficient matrix in the
modified algorithm is always symmetric and positive-basis of an iterative method of solving for the discretized

temperature. There are many iterative methods for solving definite, so that the convergence of iterative methods is
ensured. For convex cells, the modified scheme coincidesthe discrete equations that only use the product of the

matrix times a vector. For example, two-level gradient with the original scheme, so there is no need for special
procedures to detect nonconvex cells during a compu-methods and three-level conjugate-direction methods [27].

We have used the incomplete Cholesky conjugate gradient tation.
The discontinuities in the conductivity k, which are alsomethod from the package NSPCG [23] (also see [14, 22]).

The effectiveness of this approach depends strongly on the called interfaces, that are considered are simple jumps
along straight lines. The theory for interfaces only implieschoice of a preconditioner, and there are some natural

choices, such as an operator that corresponds to a finite- that the normal flux at such interfaces is continuous. It is
to be expected that the tangential flux is not continuous.difference scheme with a local gradient. We do not have

enough data and space to present a comparison of different All of the examples with an analytical solution that we
know of in the literature have both the normal and tangen-iterative methods, so this is left to a future paper.

For the flux-based algorithm, the equations can be re- tial flux continuous at any discontinuity and, thus, do not
rigorously test algorithms for problems with discontinuousformulated so that the operator that must be inverted is

symmetric, positive definite, and banded, so there are many conductivity. Consequently, we introduce a simple but im-
portant example due to J. Morel that has a solution witheffective methods for this form of the algorithm. Once the

fluxes are computed, there is an explicit formula for the discontinuous tangential flux. Any algorithm that is not
accurate for this example is inadequate for our applica-temperature in terms of the fluxes. There is only one obvi-

ous disadvantage to this procedure; in 2D there are approx- tions.
The truncation errors for the divergence and flux opera-imately twice as many unknowns than there are for more

standard methods. However, the nice properties of the tor depend strongly on the smoothness of the grid. So,
for the study of truncation errors, minimal smoothnessmatrices seem to easily compensate for this disadvantage.

The structure of our operator is close to one considered in conditions similar to the conditions used in the theory of
finite elements, are placed on the grids. In addition, the[22], and one can use modification of the multigrid method

described in [22] to invert our matrix. We use the flux- approximate solution may be compared to either the point
values or the cell-averaged values of the exact solution,based method with a block Gauss–Seidel iteration method

to compute the examples in this paper. that is, the integral average and point projections of the
exact solution. For the integral-average projection, the di-In many applications, the flux, and not the temperature,

is needed. For example, to trace contaminants in porous vergence is exact. For the point projection, we show that
for grids with minimal smoothness the truncation error formedia flow, the Darcy velocities, which are just the fluxes,

are what is needed. Moreover, the transport of the contami- the divergence is first order in the max norm and the
truncation error for the flux operator is also first order innants is sensitive to the accuracy of the fluxes, so it is
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a discrete vector L2 norm. On a smooth grid, both operators The scheme which gives numerical results closest to the
support-operators scheme was proposed by Morel, Dendy,have second-order truncation error in the interior of the

region in the max norm. In addition, the discrete gradient Hall, and White in [22], where the authors claim that their
scheme is the best of all known schemes for the problemis exact for linear functions for any grid, and discrete diver-

gence is exact for constant vectors. All of the theoretical class they are considering. The main idea used in their
scheme is to introduce additional discrete values for u onresults were checked numerically. In fact, the theoretical

results in this paper hold for general symmetric conductiv- the cell edges and then to use these values to write down
additional equations which express the continuity of theity matrices [13].

An important property of the continuum problem is that fluxes on the edges. The authors of [22] mentioned some
main disadvantages of their scheme:its solutions satisfy a maximum principal.We do not know

of an algorithm which simultaneously preserves the sym-
• There are cell-edge unknowns in addition to the cell-metry of the Laplacian, is exact for linear functions, and

centered unknowns.satisfies the maximum principle on general grids, even for
smooth k. As expected, the support-operators method does • The matrix to be inverted is not symmetric.
not have a maximum principal, but the violation of the • The matrix to be inverted can become ill-conditioned
maximum principal is small and localized (see [32]). if the mesh is sufficiently distorted.

Recall that when the conductivity matrix is the identity,
the flux operator is the gradient and the diffusion operator The last disadvantage can be fixed using positive weights

as in this paper, but then their scheme is not exact foris the Laplacian. Here is a summary of the main proper-
ties of the flux-based support-operators finite-difference linear functions. It is important to note that they may need

this modification even when the cells are convex. Distortedscheme:
cells must be detected and treated specially. In our opinion,

• The scheme is conservative. only the last two items in this list are real disadvantages,
• The finite-difference scheme is second-order accurate. and they are not present in the support-operators method.

There are many other methods of constructing approxi-• The matrices that must be inverted to solve the discrete
mations for diffusion equations, a few of which we mentionproblem are symmetric and positive definite for Dirichlet,
here. Many schemes are based on the mapping method,Neumann, and Robin boundary conditions for any grid.
where the original equations are transformed to a general

• Material discontinuities are treated rigorously.
curvilinear coordinate system, and then the resulting equa-

• All discrete operators are linear. tions are approximated on a rectangular grid in curvilinear
coordinates. For example, see Kershaw [14], Pert [25],• The discrete flux operator is the negative adjoint of
Robertson [26], or Shashkov and Steinberg [30]. Some ofthe discrete divergence.
these ideas were also used by Morel et al. [22]. Usually• The discrete diffusion operator is the composition of
such schemes are only satisfactory for smooth grids.the discrete divergence and flux operators.

In a recently published paper [1] by van Beek, van
• The discrete diffusion operator is symmetric and posi- Nooyen, and Wesseling, the authors describe an algorithm

tive definite. for discretizing the gradient on nonsmooth grids and men-
• The discrete divergence of a constant vector is exactly tioned that their aim is to provide a theoretical derivation

zero on any grid. for the best scheme given in Bernard and Kapitza [2]. The
main assumption made in [1] is that flux vector K =u is• The discrete flux operator is exact on linear functions
continuous; that is, both the tangential and normal compo-for any grid.
nents of flux are continuous at interfaces. Unfortunately,

• The null space of the discrete flux operator is the
for the problems which interest us, this continuity assump-

constant functions.
tion is not valid. In Section 6, we present an example with

• On rectangular grids, all discrete operators reduce to discontinuous tangential flux, where the method from [1]
a standard differencing. does not converge. We note that for many applications the

method from [1] works well (see [37, 39]). In particular,• On rectangular grids, the treatment of discontinuous
for all of the test problems presented in Section 6, wherecoefficients is equivalent to the usual harmonic averaging.
the flux vector is continuous, the method from [1] works• The construction can be used for the case of nondi-
very well, even for very distorted grids. Note that the ex-agonal symmetric positive-definite matrices with discon-
pression for the flux operator obtained in [1] is local andtinuous elements.
is exact for linear functions. However, the discrete diver-
gence is not the negative adjoint of the discrete gradient,To our knowledge, no other scheme has been proposed

with all of these properties. and consequently the discrete Laplacian is not symmetric
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and in principle may not be positive-definite for very dis- to compute some examples. The beginning examples study
the properties of the algorithm on rough grids, while thetorted grids.

Another interesting approach, which is not related to latter look at the algorithm for discontinuous conductivity.
In Section 7 possible extensions are described.the mapping idea, is presented by Margolin and Adams

[20] and Margolin and Tarwater [21], where the authors
2. PROPERTIES OF THE CONTINUUM PROBLEMtry to construct local discrete operators analogous to the

divergence and gradient, which are negative adjoints of
The support-operators method requires that the fullyeach other and the gradient is exact on linear functions.

discretized problem mimic the semidiscretized problem,They show that, in general, this is not possible. The authors
the problem where time, but not space, has been discret-of [21] use an original idea involving the use of some
ized. The analysis will be performed for the fully implicitnonlinear conditions related to the direction of the gradi-
time discretization, but the ideas extend easily to other timeent, which makes it possible to find a discrete gradient
discretizations. The case of Dirichlet boundary conditionswith the required properties. However, this means that the
must be analyzed separately, but is easy, so the followingdiscrete gradient depends weakly on the scalar field as
discussion is restricted to the case where b in (1.3) is notwell as the geometry of the mesh. Also, they compute the
zero at any point on the boundary, in which case we choosegradient at the nodes, which leads to spurious modes in
b 5 21 and then it is assumed that a $ 0. The first taskthe null space of the discrete gradient and, consequently,
is to write the diffusion equation and the flux form of thethe need to use a special filtering procedure to remove
diffusion equation in terms of abstract operators on innerthese modes from the solution. Also, it is not clear how
product spaces and then to enumerate the important prop-well this algorithm will work for the case of discontinu-
erties of the abstract operators. As long as it does notous coefficients.
cause any additional work, the case of general symmetricA finite-element scheme using a nodal discretization of
conductivity matrix K will be considered. However, thethe scalar field is given by Shestakov, Harte, and Kershaw
main applications are to the case of a diagonal matrix[33]. As mentioned in [22], finite-element methods do not
K 5 kI.require a smooth grid, but the nodal discretization can

cause considerable difficulty in coupling such schemes with
2.1. The Abstract Operatorsstandard Lagrangian hydrodynamic codes. For a general

discussion of using the finite-element method in the frame- The fully implicit semi-discretization of the diffusion
work of Lagrangian methods, we refer the reader to [22]. equation (1.1) and the boundary conditions (1.3) gives

This paper is arranged as follows. In Section 2, the diffu-
sion equation is discretized in time but not in space, and

a
un11 2 un

Dt
2 = · K =un11 5 f, on V,

(2.1)then this problem is written in terms of abstract operators
corresponding to the divergence combined with the normal

(K =un11, n) 1 aun11 5 c, on ­V,derivative boundary operator and the flux operator. The
integral and symmetry properties of these operators illumi-

where the index n corresponds to time level tn 5 n Dt andnate the properties that must be preserved when the finite-
un 5 u(tn, x, y). It is assumed that a, K, f, a, and c aredifference scheme is constructed. The grid, the discretiza-
functions of coordinates and time, but because the maintion of scalar and vector functions, and the inner products
goal is to study the spatial discretization, the time indexand related spaces of discrete functions are introduced in
on these functions is suppressed. Equation (2.1) can beSection 3. In Section 4, these structures and the support-
written in the operator formoperators method are used to construct the discrete diver-

gence and a discrete flux operator. Both scalar and flux-
Aun11 5 F n11, (2.2)based algorithms for solving the diffusing equations are

described. The operators are written out in detail for a
where the operator A is given by

rectangular grid.
The theoretical properties of the support-operators algo-

rithm are discussed in Section 5. The truncation error is
Au 5Hau/Dt 2 = · K =u, on V,

(K =u, n) 1 au, on ­V,
(2.3)

investigated for the discrete divergence and flux operators,
for both smooth and general grids. In addition, the null
space of the discrete flux operator is investigated and a and where the right-hand side of the previous has the form
relationship between the null space of the flux operator
and conservation is presented. Finally, we show how to
make the algorithm robust when there are nonconvex cells F n11 5Hf 1 aun/Dt, on V,

c, on ­V.
(2.4)

in the grid. In Section 6, the flux-based algorithm is used
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The flux form of the diffusion equation (1.2) and the 2.2. Properties of the Abstract Operators
boundary conditions (1.4) can be equivalently discretized

The support-operators method requires that we choose
in time as

a prime operator, a derived operator, an integral identity
connecting the prime and derived operator, a discretization
of the prime operator, and discrete analogs of the above
inner products. The divergence =? is chosen as the prime

wn11 5 2K =un11, on V,

a(un11 2 un )/Dt 1 = · wn11 5 f n11, on V,

2(wn11, n) 1 aun11 5 c, on ­V.

(2.5)
operator and it will be discretized using an analog of the
divergence theorem

This can be written in the operator form E
V

= · w dV 5 R
­V

(w, n) dS. (2.14)

wn11 2 Gun11 5 0, Dwn11 1 Vun11 5 F n11, (2.6)
Previously, the gradient was always chosen as the derived
operator, but we now choose it to be the flux operatorwhere the operators G, D, and V are defined by
K =. The required integral identity is Gauss’ theorem writ-
ten in the form

Gu 5 2K =u, on V, (2.7)

E
V

u= · w dV 1 E
V

(w, K21K =u) dV 5 R
S

u(w, n) dS.
Dw 5H1= · w, on V,

2(w, n), on ­V,
(2.8)

(2.15)

The definition of the operator D, the formulas (2.11)Vu 5H(a/Dt)u, on V,

au, on ­V.
(2.9)

and (2.12) for the inner product, and integral identity
(2.15), which connects =? and =, give (Dw, u)H 5 (w, Gu)H

which implies that G 5 D*. Also, the divergence propertyEliminating the flux from (2.6) shows that
(2.14) is equivalent to (Dw, 1)H 5 0, where 1 is the constant
function with value 1. Because it is assumed that a . 0

A 5 V 1 DG. (2.10) and a $ 0, it follows that V 5 V* $ 0. If it is assumed
that a . 0, then V . 0. In summary,

The inner-product space (Hilbert space) H is the closure
of scalar functions u that are smooth on the closure of V (Dw, 1)H 5 0, (2.16)
using the inner product

and if a . 0, then
(u, v)H 5 E

V
uv dV 1 R

­V
uv dS, u, v [ H, (2.11)

G 5 D*, V 5 V* . 0, (2.17)

while the inner-product space H is the closure of the vector
and becausefunctions w that are smooth on the closure of V using the

inner product
A 5 V 1 DG 5 V 1 G*G, (2.18)

(A, B)H 5 E
V

(K21A, B) dV, A, B [ H. (2.12)
it follows that

Because matrix K is symmetric and uniformly bounded A 5 A* . 0. (2.19)
above and below, then so is K21. This implies that (?,?) is,
in fact, an inner product, even if K is not continuous. Such These are the important properties of the continuum oper-
weighted inner products also naturally appear in mixed ators that the fully discretized operators should mimic.
finite-element formulations (see, for example, [7, 38]). Now Because the properties of A follow from the properties of
the domains and ranges of the abstract operators can be V, D, and G and the definitions of the inner products, the
given precisely: goal of the support-operators method is to build discrete

analogs of the operators V, D, and G and the inner prod-
ucts that satisfy an analog of (2.17) and (2.16).G : H R H, D : H R H, V : H R H, A : H R H. (2.13)
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2.3. Forms of the Semidiscretized Diffusion Equation

The semidiscretized diffusion equation can be written
in three useful forms: as a system of first-order equations,
as a second-order equation for the temperature; or as a
second-order system for the fluxes. The system for the
fluxes is very useful for computations. The first-order sys-
tem (2.6) is

wn11 2 Gun11 5 0, Dwn11 1 Vun11 5 F n11. (2.20)

If the flux w is eliminated from these two equations, then
FIG. 1. Typical cell of a logically rectangular grid.the abstract form of the diffusion equation (1.1) is obtained:

Aun11 5 (V 1 DG)un11 5 F n11. (2.21)
to the cell side. Also the spaces of discrete scalar and vector
functions and their inner-products are introduced. The im-On the other hand, if u is eliminated, then an equation for
portant explicit formulas for the inner-products are giventhe flux at the new time level is obtained:
in a form useful for characterizing the matrices generated
by the discretization.Bwn11 5 (I 1 GV21D)wn11 5 GV21F n11. (2.22)

It is straight forward, but requires a lengthy exposition,
to extend the ideas in this paper to three-dimensional grids.The results in the previous section imply that A 5
However, because the two-dimensional geometry is a sim-A* . 0 and B 5 B* . 0 so both the equation for u and
plified model of the three-dimensional geometry, most ofthe one for w have nice properties. It is important to note
the terminology used in the discretization come from thethat the boundary conditions are included in the definitions
three-dimensional setting. For example, the area of a 2Dof the operators and the spaces of functions in a natural
cell corresponds to the volume of 3D cell, the length of away. In addition, the conservation law for u follows from
side corresponds to the area of a face, and the center ofthe second equation in (2.20), because
an edge of a cell corresponds to the center of a cell face,
which explains some of the notation in the cell in Fig. 1.(Dwn11, 1)H 1 (Vun11, 1)H 5 (F n11, 1)H , (2.23)
A logically rectangular grid can be interpreted as a grid
which is formed by the intersections of the coordinate linesbut then the divergence property (2.16) gives
of some curvilinear coordinate system x 5 x(j, h), y 5
y(j, h), where j and h are the curvilinear coordinates.(Vun11, 1)H 5 (F n11, 1)H , (2.24)
Then the coordinate lines are given by j varying while h
is constant, and h varying while j is fixed. In three dimen-and then the definition of F implies that
sions, with curvilinear coordinates j, h, and z, one coordi-
nate surface is given by j constant while h and z vary, so

(Vun11, 1)H 2 (Vun, 1)H 5 E
V

f dV

(2.25)
this surface is best labeled by j. When this setup is projected
into two dimensions, this surface becomes the curve with

1 E
­V

(c 2 aun) dS, j constant and h varying, so this curve is labeled with j,
which explains more of the notation in Fig. 1. An extensive
discussion of these points can be found in Chapter 2 ofwhich is the equivalent to the standard conservation law.
[15], by Knupp and Steinberg.In particular, if there are no sources in the problem, that

is, f 5 0, c 5 0, and a 5 0; then (Vun11, 1)H 5 (Vun, 1)H , 3.1. The Grid and the Discretization
which is the standard conservation law. of Scalars and Vectors

By definition, a logically rectangular grid can be indexed3. THE GRID AND SPACES OF DISCRETE FUNCTIONS
in exactly the same way as a rectangular grid. That is, if
M and N are positive integers, then the (i, j) node of theThis section describes the grids used in this paper, along

with the discretization of scalar and vector functions. grid is (x(i, j), y(i, j)), 1 # i # M, 1 # j # N. The quadrilat-
eral defined by the nodes (i, j), (i 1 1, j), (i 1 1, j 1 1),Scalars are discretized at cell centers, while the components

of the discretized vectors are located at the center of the and (i, j 1 1) is called the (i, j) cell (see Fig. 1). The area
of this cell is denoted by VC(i,j) (V is for volume in 3D).cell sides and are the components in the direction normal
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parameter a and the matrix parameter K appearing in the
diffusion equation are discretized in the same way as u,
except their values on the boundary are not needed. The
scalar functions a and c that appear in the boundary condi-
tion use the same discretization as is used for u on the
boundary.

Vector functions are discretized using components which
are the orthogonal projections on the directions perpendic-
ular to the sides of the cells (see Fig. 2),

Wj(i,j) : i 5 1, ..., M; j 5 1, ..., N 2 1,
(3.3)FIG. 2. Discretization of scalars and vectors.

Wh(i,j) : i 5 1, ..., M 2 1; j 5 1, ..., N,

where Wj(i,j) is the component at the center of side with
The length of the side of the (i, j) cell that connects the vertices (i, j), (i 1 1, j) and Wh(i,j) is the component at
vertices (i, j) and (i, j 1 1) is denoted Sj(i,j ) (this is the the side with vertices (i, j), (i, j 1 1). Now the 3D analog
curve with j constant), while the length of the side that for cells with planar faces helps clarify what is going on;
connects the vertices (i, j) and (i 1 1, j) is denoted Sh(i,j) . vectors in 3D are discretized using components that are
The angle between any two adjacent sides of cell (i, j) that normal to the faces of the 3D cells and located at the center
meet at node (k, l) is denoted w (i,j)

k,l (the angle w (i,j)
(i11,j) is of the face. Therefore, if a face is given by j constant, then

displayed in Fig. 1). the normal to this face is labeled with Wj.
The methods described in this paper have provably good

properties and work well for general convex cells. In Sec- 3.2. The Natural Inner Products
tion 6, grids with nonconvex cells and even cells with self-

Now, to proceed with the support-operators method, theintersecting sides are considered. Naturally, as the types
discrete scalar and vector functions must have an innerof cells allowed become more general, the algorithm ceases
product which is called the natural inner product. Theto have some important properties, but it can still produce
space of discrete scalar functions is labeled HC, and agood results.
natural analog for the continuum inner product (2.11) isTo study truncation errors or convergence rates, some

mild smoothness assumptions are placed on the grid. If

(U, V)HC 5 OM21

i51
ON21

j51
U(i, j) V(i, j) VC(i, j)

h 5 max H 1
M 2 1

,
1

N 2 1J , (3.1)

1 OM21

i51
U(i,0) V(i,0) Sh(i,1)

then h is used as a small parameter which characterizes
the density of the grid. It is assumed that there exists
constants C (i)

max and C (i)
min , i 5 1, 2, and a constant d . 0, 1 ON21

j51
U(N, j) V(N, j) Sj(N, j) (3.4)

which do not depend on h, so that

1 OM21

i51
U(i,M) V(i,M) Sh(i,M)C 1

min h2 # VC(i,j) # C 1
max h2,

C 2
min h # Sj(i,j) , Sh(i,j) # C 2

max h, (3.2)
1 ON21

j51
U(0, j)V(0, j) Sj(1, j).

sin Sw (i,j)
(k,l)D. d.

It is clear that the inner product is symmetric,
(U, V)HC 5 (V, U )HC, and that if all volumes VC(i, j) andThe discrete analog of scalar function u is a cell-centered

discrete scalar function U(i,j) (see Fig. 2), where the indices lengths Sj(i, j) , Sh(i, j) are positive, then (U, U )HC $ 0 and
(U, U )HC 5 0 if and only if U D 0, so the inner productvary in the same range as for the cells VC(i,j) . The treatment

of the boundary conditions requires the introduction of is properly defined.
The space of vector functions is labeled HS, and a naturalthe values of the scalar function on the centers of the

boundary segments, that is, U(0, j) , U(M, j) for j 5 1, ..., inner product, which is the analog of the continuum inner
product (2.12) isN 2 1 and U(i,0) , U(i,N) for i 5 1, ..., M 2 1. Also, the scalar
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where the V (i, j)
(i1k, j1 l) are some weights for which

o1
k, l50 V (i, j)

(i1k, j1 l) 5 1 where the notation for weights is the
same as for the angles of a cell. It is shown in [32] that to
obtain a first-order approximation for the gradient opera-
tor it is necessary that the weights V (i, j)

(i1k, j1 l) are one half
of the area of the triangle in cell (i, j) which contains the
angle at node (i 1 k, j 1 l), divided by the volume of the
cell. Using the cosine theorem, it is easy to prove that
expression (3.7) satisfies the properties of an inner product
and, in particular, (A, A)(i, j) . 0 if A ? 0.

3.3. The Formal Inner Products

For the computation of adjoint relationships and the
entries of the matrices corresponding to the discretized

FIG. 3. Components of a vector in the local basis. operators, the formal inner products, [?,?] in the spaces of
scalar and vector functions are introduced. In space HC,

(A, B)HS 5 OM21

i51
ON21

j51

(A, B)(i, j)

k(i, j)
VC(i, j) , (3.5)

[U, V ]HC 5 OM21

i51
ON21

j51
U(i, j)V(i, j) 1 OM21

i51
U(i,0)V(i,0)

where (?,?)(i, j) is an inner product associated with a cell and
k(i, j) is the value of k(x, y) at the center of the cell (i, j).

1 ON21

j51
U(M, j)V(M, j) 1 OM21

i51
U(i,N)V(i,N) (3.8)

This inner product will be proper, provided that k(i, j) . 0
and VC(i, j) . 0, which are assumed, and if the cell inner
product is properly defined. Note that we have used, in a 1 ON21

j51
U(0, j)V(0, j) ,

critical way, the assumption that K is diagonal, if it is
not, then the expression for the inner product is much

while in space HS,more complicated.
As the components of vectors are not located at the

same point (not co-located), the definition of the inner [A, B]HS 5 OM21

i51
ON21

j51
Aj(i, j)Bj(i, j)

(3.9)product is a bit involved. To define the inner product of
two vectors in a cell, first a formula for the inner product

1 OM21

i51
ON
j51

Ah(i, j)Bh(i, j) .of two vectors with co-located components is given in terms
of their components perpendicular to the cell sides (see
Fig. 3). Thus, suppose that the j and h axes form a non-

Then the relationships between natural inner products andorthogonal basis system and that w is the angle between
the formal inner products have the formthese axes. If the unit normals to the axes are nj and nh,

then the components of the vector W in this basis are the
(U, V )HC 5 [MU, V ]HC, (A, B)HS 5 [ SA, B]HS . (3.10)orthogonal projections Wj and Wh of W onto these normal

vectors. Now, some simple vector algebra shows that if
A comparison of the natural and formal inner prod-A 5 (Aj, Ah) and B 5 (Bj, Bh), then the expression for

ucts givestheir inner product is

(M U )(i, j) 5 VC(i, j)U(i, j) ,
(A, B) 5

Aj Bj 1 Ah Bh 1 (Aj Bh 1 Ah Bj) cos(w)
sin2(w)

(3.6)
i 5 1, ..., M 2 1;

j 5 1, ..., N 2 1, (3.11)Next define (A, B)(k,l)
(i, j) , where each index (k, l) cor-

responds to one of the vertices of cell (i, j), by making (M U )(i, j) 5 Sj(i, j)U(i, j) ,
the following replacements in (3.6): Aj R Aj(i1k, j); i 5 0; i 5 M;
Bj R Bj(i1k, j) ; Ah R Ah(i, j1l) ; Bh R Bh(i, j1l) ; w R

j 5 1, ..., N 2 1, (3.12)w (i, j)
(i1k, j1l) . The natural cell inner product is a symmetric

analog of (3.6), (M U )(i, j) 5 Sh(i, j)U(i, j) ,

i 5 1, ..., M 2 1;
(A, B)(i, j) 5 O1

k, l50
V (i, j)

(i1k, j1l)(A, B)(k, l)
(i, j) , (3.7)

j 5 0; j 5 N. (3.13)
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D1[U, V ]HC $ [ M U, V ]HC $ d1[U, V ]HC ,
(3.16)

D2[A, B] HS $ [ S A, B]HS $ d2[A, B]HS ,

where the constants depend on the upper and lower bounds
for k and the geometric properties of the cell. The formulas
for the constants confirm that if all cells are convex, then
the inner products are positive definite. For highly dis-
torted nonconvex cells, it is easy to construct discrete scalar

FIG. 4. Footprint of the operators S12 and S21 . or vector fields for which the inner products will have
negative values. Thus a modification of the definition of
the inner product which ensure that these operators are
positive in the case of nonconvex grids is presented inThe operator S can be written in block form:
Section 5.

S 5 SS11 S12

S21 S22
D . (3.14) 4. FINITE-DIFFERENCE SCHEME

Following the method of support-operators, the diver-Then a comparison of formal and natural inner products
gence is chosen as the prime operator and then discretizedgives
using an analog of the divergence property (2.14). Next,
the discretization of the flux operator is derived. These
discrete operators are then used to discretize the various(S11Aj)(i, j) 5 1O1k,l50

1
k(i2k, j)

?
V (i2k, j)

(i, j1l)

sin2(w (i2k, j)
(i, j1 l) )2Aj(i, j) ,

forms of the diffusion equation, and then some properties
of these discretizations are derived. All of the objects stud-
ied in this section are particularly simple on rectangular
grids, so in the final subsection they are all written out in(S12Ah)(i, j) 5 O1

k, l50 1(21)k1l

k(i2k, j)
?

V (i2k, j)
(i, j1l)

sin2(w (i2k, j)
(i, j1 l) )

cos(w (i2k, j)
(i, j1l) )2 this context.

3 Ah(i2k, j1l) , (3.15) 4.1. The Prime Operator or the Divergence

The analog of the abstract operator, D, which is defined
(S21Aj)(i, j) 5 O1

k, l50 1(21)k1l

k(i, j2l)
?

V (i, j2l)
(i1k, j)

sin2(w (i,j2l)
(i1k, j))

cos(w (i, j2l)
(i1k, j))2 in (2.8) and is the divergence in the interior of the region,

and the normal component of a vector on the boundary,
is labeled D, and is the prime discrete operator. On the3 Aj(i 1 k, j 2 l),
interior of the region, it is

(S22Ah)(i, j) 5 1O1k,l50

1
k(i, j2l)

?
V (i, j2l)

(i1k, j)

sin2(w (i, j2l)
(i1k, j))2Ah(i, j) . (D W)(i, j) 5 (DIV W)(i, j)

5
1

VC(i, j)
h(Wj(i11, j)Sj(i11, j) 2 Wj(i, j) Sj(i, j)) (4.1)Actually, these formulas are valid only for the interior

nodes: i 5 2, ..., M 2 2; j 5 2; ..., N 2 2; but it is possible
1 (Wh(i, j11) Sh(i, j11) 2 Wh(i, j) Sh(i, j))j,to prove that if fictitious nodes are introduced for i 5 0;

i 5 M 1 1; j 5 0; j 5 N 1 1, then these formulas are valid
while on the boundary of the region, it isfor i 5 1, ..., M 2 1; j 5 1, ..., N 2 1. The operators S11

and S22 are diagonal and the footprint (points where the
coefficients of the stencil of the finite-difference scheme (D W)(i,0) 5 2Wh(i,1) , i 5 1, ..., M 2 1,
are not zero) for the operators S12 and S21 are shown in

(D W)(i,N) 5 1Wh(i,N) , i 5 1, ..., M 2 1, (4.2)Fig. 4.
It is critical for the support-operators method that the (D W)(0, j) 5 2Wj(1, j) , j 5 1, ..., N 2 1,

operators M and S are symmetric and positive definite.
(D W)(M, j) 5 1Wj(M, j) , j 5 1, ..., N 2 1.For the algorithms introduced in this paper, this is always

true for convex cells. Using standard arguments for esti-
Note that telescoping the sums givesmating inner products, it can be shown that there exists

constants Di and di , i 5 1, 2, such that the formal inner
products satisfy (D W, 1)HC 5 0 (4.3)
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which is called the divergence property of the discrete 4.3. The V Operator
divergence D and is the direct analog of the divergence

The discrtete form for V (2.9) is
property (2.16) for the continuum operator.

4.2. The Derived or Flux Operator (VU)(i, j) 5H(a(i, j)/Dt)U(i, j), in V,

a(i, j)U(i, j) , on ­V,
. (4.10)

The derived operator G is called the discrete flux opera-
tor and is the analog of the continuum flux operator G 5

The operator V is symmetric and because V and M are2K = and is defined by G 5 D *, where the adjoint is
diagonal, VM 5 M V. It is assumed that a . 0 andtaken in the natural inner products. As will be seen, for
a $ 0, so V $ 0. In addition, if both a and a are boundednonorthogonal logically rectangular grids, this operator is
below by c and above by C, then V is bounded belownot banded. However, this operator can be expressed as
and above:a product of a banded and an inverse of a banded matrix,

a fact that is important for the numerical algorithms. Recall
C(U, V)HC $ (VU, V)HC $ c(U, V)HC . (4.11)that D : HS R HC and that the definition of the adjoint

gives
4.4. Forms of the Fully Discretized Diffusion Equation

Now the tools are in place to look at the fully discretized(D W, U )HC 5 (W, D *U )HS , (4.4)
forms of the semidiscretized equations presented in Sec-
tion 2.3. The first-order system (2.20) is discretized as

which can be translated to the formal inner products as

VU n11 1 D Wn11 5 F n, G U n11 2 Wn11 5 0. (4.12)
[D W, M U ]HC 5 [W, S D *U ]HS . (4.5)

If the flux is eliminated from (4.12), then the fully discret-
ized form of the diffusion equation (2.21) is obtained:The formal adjoint D † of D is defined to be the adjoint

in the formal inner product, so
A U n11 5 (V 1 D G )U n11 5 F n11. (4.13)

[W, D †M U ]HS 5 [W, S D *U ]HS . (4.6) On the other hand, if U is eliminated from (4.12) then a
single equation for the flux analogous to (2.22), is obtained:

This relationship must be true for all W and U, so
B W n11 5 (I 1 G V21D )W n11 5 G V21F n11. (4.14)

D †M 5 S D *, (4.7)
Here it is assumed that V is positive definite.

The operators A and B have nice symmetry and posi-
and then the discrete analog of operator G is given by tivity properties. In the natural inner product

(A U, V)HC 5 (VU, V)HC 1 (G U, G V)HS , (4.15)G 5 D * 5 S 21D †M . (4.8)

which makes it clear that A is symmetric and positive, andNote that, in general, S is banded and consequently S 21

positive definite if either V or G is positive definite. Next,is not usually banded so that G is not usually banded.
That is, G has a nonlocal stencil. Also, when the diffusion

(B W, V)HS 5 (W, V)HS 1 (V21D W, D V)HC , (4.16)coefficient k is not constant, then it is not possible to write
G as the product of a discrete diffusion coefficient times

and then it is clear that B is symmetric and positive definitea discrete gradient.
if V is positive definite.Summation by parts applied to the left-hand side of

Unfortunately, both A and B are nonlocal whenever(4.6) gives
G is nonlocal. There is a way of rearranging the computa-
tion of A , as shown later, so that A U can be computed
efficiently. This allows the use of a large class of iterative

2(D †M U)(i, j) 5SSj(i, j)(U(i, j) 2 U(i21, j))

Sh(i, j)(U(i, j) 2 U(i, j21))
D , (4.9) solvers in the numerical algorithms. In the case of B ,

note that

S B 5 S 1 D †M V21D (4.17)where M is defined in (3.10).
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is banded, so B 21 5 (SB )21S is the product of an inverse
of a banded matrix and a banded matrix.

The structure of B is related to the notion of compact
finite-difference schemes that are widely used on 1D and
2D on rectangular grids (see, for example, [3, 17, 16]). To
see this, note that the discrete fluxes can be written as

W 5 G U 5 S 21D †M U

and, then, applying the operator S to both sides of this FIG. 5. Footprint for the equations for the fluxes.
equation gives

S W 5 D †M U. (4.18)
Equation (4.19) can be written in components as

As above, S and D †M are banded, so this is a standard
C 1,1Wj n11 1 C 1,2Whn11 5 F

n11
1 , (4.21)form for a compact representation of the fluxes.

C 2,1Wj n11 1 C 2,2Whn11 5 F
n11
2 . (4.22)

4.5. The Computational Sequence

Two approaches are considered here: solve Eq. (4.13) The definition C 5 S 1 D †M V21D implies that
for U; or solve Eq. (4.14) for W. In the first case, it has Eqs. (4.21) and (4.22) have the stencil footprints shown in
already been observed that the operator A 5 V 1 DG is Fig. 5 and the operators C 1,1 and C 2,2 are tridiagonal. The
nonlocal because G is nonlocal, and thus it is not practical block or line Gauss–Seidel method is used to solve (4.22)
to use direct methods on this problem for large systems. and (4.23):
The main difficulty in arranging this equation for an effi-
cient solution is that G is to the right of D in the formula C 1,1Wj (s11) 1 C 1,2Wh(s) 5 F

n11
1 , (4.23)

for A . However, many iterative algorithms only require
C 2,1Wj (s11) 1 C 2,2Wh(s11) 5 F

n11
2 . (4.24)an efficient way of multiplying by the operator A , and this

can be implemented in a reasonable way. To compute A U,
To compute Wj (s11) from 4.23 or Wh(s11) from 4.24, areintroduce the flux W 5 G U and note that W satisfies
tridiagonal system of equations must be solved, which canEq. (4.18), S W 5 D †M U, which can be solved for W
be done using direct methods. After the fluxes W n11 areusing standard methods because S is banded, symmetric,
computed, the temperature is computed using the ex-and positive definite. Then A U 5 VU 1 W. Note that
plicit formulathis approach requires the computation of the fluxes as an

intermediate step so we will turn to a flux-based algorithm
and not pursue this approach any further. U n11 5 V21(F n11 2 D Wn11). (4.25)

In the second case, as observed before, B is nonlocal,
but since S B is local, combine Eq. (4.14) multiplied by Also, note that by multiplying Eq. (4.25) by V and using
S , and (4.18) to get the divergence property (4.3) gives

(S 1 D †M V21D )W n11 5 D †M V21F n11, (4.19) (VU n11, 1)HC 5 (F n11, 1)HC, (4.26)

which is convenient for computation; in particular, (4.19) which is a discrete conservation law analogous to the con-
has a local stencil. To see the properties of the coefficient tinuum conservation law (2.24). It is important to note that
matrix of (4.19), note that this conservation law does not depend on Eq. (4.19). Thus

if (4.25) is computed exactly, then the conservation law
[(S 1 D †M V21D )W, W]HS will hold exactly. It is common to solve (4.19) using an

iterative method, so the solution for W may contain sig-5 [S W, W]HS 1 [M V21D W, D W]
(4.20) nificant errors, but this will not effect the conservation law.

In fact, for many algorithms used for solving the diffusion$ d2iWiHS 1
d1

C
iD WiHC,

equations, the conservation property is violated because
an iterative method is used to solve for U, and the U
obtained does not exactly satisfy the discrete equationswhere the constants are defined in (3.16) and (4.11). Thus

the coefficient matrix is symmetric and positive definite. (see [28]).
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4.6. Discrete Operators on a Rectangular Grid 5. PROPERTIES OF THE ALGORITHM

One can see more about the relationship between the In the support-operators setting, the errors in approxi-
support-operators discretizations and other discretizations mating the divergence and gradient are checked first, and
by looking at rectangular grids: Sj(i, j) 5 Dy; Sh(i, j) 5 Dx; then these results are used to study other operators. There
VC(i, j) 5 Dx Dy; sin(w (i, j)

(k,l)) 5 1; and cos(w (i, j)
(k,l)) 5 0. The are two natural notions of truncation error: one for point

formula for the divergence, DIV 5 D , on the interior of values and one for averaged values. The truncation error
the grid, is then is estimated both for general grids (those satisfying assump-

tions (3.2)) and smooth grids, for which there is a smooth
transformation (x(j, h), y(j, h)) from the unit square in(DIV W)(i, j) 5

Wj(i11, j) 2 Wj(i, j)

Dx (4.27) the logical space (j, h) to the region V, so that

1
Wh(i, j11) 2 Wh(i, j)

Dy
,

x(i, j) 5 x(ji, hj), y(i, j) 5 y(ji, hj ), (5.1)

which is a natural discretization for rectangular grids.
where ji 5 (i 2 1)/(M 2 1), hi 5 ( j 2 1)/(N 2 1),In this simple situation, Eqs. (3.15) and (3.7) imply that
1 # i # M, and 1 # j # N (for details see [15]).the flux W 5 G U in the interior can be written as

Because G is given by one-sided differences on the
boundary for orthogonal grids, the local truncation error

Wj(i, j) 5
2k(i21, j) k(i, j)

k(i21, j) 1 k(i, j)

U(i, j) 2 U(i21, j)

Dx
, (4.28) on the boundary cannot be more than first-order accurate.

Thus the accuracy of G is only estimated in the interior of
the region. The operator D is the normal component of

Wh(i, j) 5
2k(i, j21) k(i, j)

k(i, j21) 1 k(i, j)
·
U(i, j) 2 U(i, j21)

Dy
. (4.29) flux on the boundary and hence is exact. When the conduc-

tivity k is variable, it is not possible to isolate a gradient
in the discrete flux operator G . However, when k 5 1, thenThus, this form of the support-operators approach leads
the gradient is defined by GRAD 5 G for both the interiorto the well-known harmonic average for the coefficient k
and boundary.(see [24]). On the boundary, the fluxes are given by one-

This section is completed by checking some othersided differencing. For example, on the left boundary,
important properties. The null space of the discrete flux
operator or gradient is particularly important; if the flux

Wj(1, j) 5 k(1, j) ?
U(1, j) 2 U(0, j)

Dx/2
. (4.30) operator applied to a function or the gradient of a

function is zero, then the function is a constant. Finally,
the properties of the discrete operators are studied onThe formulas on the remaining parts of the boundary
very distorted grids.are similar.

In this section, we give the definitions of the variousTo find the discrete analog of = · k =, introduce the no-
truncation errors and summarize the results for these er-tation
rors. The proofs are lengthy Taylor series calculations and
are given in detail in [32].

kj(i, j) 5
2k(i21, j)k(i, j)

k(i21, j) 1 k(i, j)
, kh(i, j) 5

2k(i, j21)k(i, j)

k(i, j21) 1 k(i, j)
, (4.31)

5.1. Truncation Error

for the harmonic averages of k, and then in the internal Let ph : H R HC be a projection operator from the space
cells, the discrete analog of = · k =u is of continuous scalar functions to a space of discrete scalar

functions, and let Ph : H R HS be a projection operator
from the space of continuous vector functions to a space
of discrete vector functions, where h estimates the size ofkj(i11, j)

U(i11, j) 2 U(i, j)

Dx
2 kj(i, j)

U(i, j) 2 U
(i21, j)

Dx
Dx (4.32)

the largest cell in the discrete grid. Then the truncation
error c for the divergence, gradient, and Laplacian are
given by

1

kh(i, j11)
U(i, j11) 2 U(i, j)

Dy
2 kh(i, j)

U(i, j) 2 U
(i, j21)

Dy
Dy cDIV(w) 5 ph(= · w) 2 DIV(Phw), (5.2)

cGRAD(u) 5 Ph(=u) 2 GRAD(phu), (5.3)
which is a standard five-cell approximation on a rectangu-
lar grid. cDIV GRAD(u) 5 ph(= · =u) 2 DIV GRAD(phu). (5.4)
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5.1.1. Projections for Scalars 5.1.3. The Truncation Error for the Divergence

For general grids satisfying (3.2), the divergence is exactThe integral average projection p1 and the point projec-
tion p2 for scalar functions are given by when the integral-average projection (5.2) is used:

c1
DIV(w) 5 p1

h(= · w)(i, j) 2 DIV(P1w)(i, j) 5 0. (5.12)

p1
h(u)(i, j) 5

eV(i, j)
udV

VC(i, j)
, p2

h(u)(i, j) 5 u(x c
(i, j), y c

(i, j)), (5.5)
For point projections, the truncation error is

c2
DIV(w) 5 p2

h(= · w)(i, j) 2 DIV(P1w)(i, j) 5 O(h), (5.13)where V(i, j) is cell (i, j) and (xc , yc) is the geometric center
of a cell. Note that

so the divergence has the first-order truncation error in
the maximum norm.(p2

hu)(i, j) 5 (p1
hu)(i, j) 1 O(h), (5.6)

It is also easy to check that

because point values are first-order approximations of DIV P1
h(C) 5 0; (5.14)

averages (see [32]).

that is, DIV of a constant vector is equal to zero.
5.1.2. Projections for Vectors For smooth grids (5.1) and point projections, the esti-

mate of the truncation error for the divergence can beThe integral average P1
h and the point projections for

improved to second order in the maximum norm:vectors are

c2
DIV(w) 5 p2

h(= · w) 2 DIV(P2
hw) 5 O(h2). (5.15)

P1
h 5SP1jh

P1hh
D , P2

h 5SP2jh

P2hh
D , (5.7)

This is done by writing the divergence in general coordi-
nates, writing the discrete divergence in an analogous form,
and then comparing the various parts of the two expres-

where the components of the integral average projection sions (see [32] for the details).
are the integral averages of the normal component of the
vector over the cell sides: 5.1.4. Truncation Error for the Flux Operator

and the Gradient

For general grids satisfying (3.2), the point-projection
(P1jh(w))(i, j) 5

eSj(i, j)
(w, n) dS

Sj(i, j)
,

(5.8)
truncation error for the flux operator,

c2
G (u) 5 P2

h(Gu) 2 G (p2
hu), (5.16)

(P1hh(w))(i, j) 5

eSh(i, j)
(w, n) dS

Sh(i, j)
,

is first-order accurate in the mean-square norm,

and the components of point projection for a vector are ic2
G iHS 5 O(h). (5.17)given by the values of the normal component of the vector

at the middle of the sides of the cell:
The proof of this result also shows that for u linear
c2

G (u) 5 0. For smooth grids, the previous estimate can
(P2jh(w))(i, j) 5 (w, n)u(xj(i, j),yj(i, j))

,
(5.9)

be improved to

(P2hh(w))(i, j) 5 (w, n)u(xh(i, j),yh(i, j))
,

c2
G (u) 5 P2

h(K=u) 2 G (p2
hu) 5 O(h2) (5.18)

where on the interior of the grid. The proof of (5.17) requires a
detailed analysis of the geometry of a cell and thus is rather
lengthy. The proof of (5.18) is similar to the analogous

xj(i, j) 5
(x(i, j) 1 x(i, j11))

2
, yj(i, j) 5

(y(i, j) 1 y(i, j11))
2

, (5.10) result for the divergence. A proof of both results, when K
is the identity, is given in [32]. The extension to the case
of smooth variable diffusion coefficient k is straightfor-xh(i, j) 5

(x(i, j) 1 x(i11, j))
2

, yh(i, j) 5
(y(i, j) 1 y(i11, j))

2
. (5.11)

ward, but lengthy.



SOLVING DIFFUSION EQUATIONS 397

Note that (5.17) can be used to show that the algorithm
is first-order accurate in the integral norm by standard
energy methods; see [34]. Also, note that Eq. (4.18), which
gives the relationship between the fluxes and the tempera-
ture, is S W 5 D †M U. A key point in the proof of (5.17)
is to show that S c2

GRAD is third order, which then im-
plies that

S GRADU 5 D †M U 1 O(h3),

which is an analog of (4.18). The previous equation has
a simple geometric meaning. The right-hand side of the

FIG. 6. Distorted grid cells.equation is an expression which is proportional to the direc-
tional derivative in the direction from the center of one
cell to the center of another. Also on the left-hand side, The first formula above implies that U is constant in i,
there is a combination of directional derivatives in direc- while the second implies that U is constant in j, so U is
tions normal to the edges of the cell, but all of these normal constant. When the diffusion coefficient is constant, this
derivatives are at different locations. becomes GRAD U equals zero if and only if U is a constant.

The property that the null space of the discrete gradient5.2. The Conservation Law and the Gradient
GRAD contains only the constant functions, exactly as forof Constants
the differential operator =, is an important property for

The action of the approximate divergence and gradient numerical schemes. There are many finite-difference and
on constant and linear fields has a strong impact on the support-operator schemes that do not have this property,
quality of algorithms, especially for the support-operators particularly those where vectors are co-located at the cor-
algorithm. In fact, the flux operator applied to constants ners of cells, as is the case in many Lagrangian codes. For
giving zero is closely related to the conservation law for such schemes, typically the highest-frequency mode on the
the divergence. Equations (4.4) and (4.8) show that grid is also in the null space of the discrete gradient, and

then a special procedure for filtering noise from the solu-
(D W, 1)HC 5 (W, G 1)HS (5.19) tion is required, as in the method of Margolin [21].

5.4. Severe Grid Distortionfor all W, so that by the divergence property (4.3),
(D W, 1)HC 5 0 is equivalent to G 1 5 0. When the dif- The algorithm presented in this paper is provably correct
fusion coefficient k is constant, then this is equivalent to for grids with convex cells. The numerics show that the
GRAD 1 5 0. By linearity, this is equivalent to the discrete algorithm produces good results for grids with non-self-
flux operator or the gradient killing constants. The equiva- intersecting cells, including grids with nonconvex cells such
lence of the divergence property of an operator to the as the boomerang cell shown in Fig. 6, provided the itera-
adjoint operator killing constants is one of the nice features tive solver converges. Nonconvex cells do cause trouble
of this theory. for the iterative solver.

The difficulty comes from the formula for the weights
5.3. The Null Space of the Discrete Gradient in the definition of the inner product of vectors (3.7) which

also appear in the definition (3.15) of the operator S whichThere is another important property of the gradient:
must be iteratively inverted. As noted just after Eq. (3.7),=u 5 0 implies that u is a constant. Because K . 0, this
the weights in this definition are one half of the area ofis the same as Gu 5 K=u 5 0 implies that u is a constant.
the triangle which has its vertex at the point (i 1 k, j 1 l)The same holds for the discrete operators. To see this,
and belongs to cell (i, j), divided by the volume of the cell.assume that G U 5 0 and recall that G U 5 S 21D †M U,
For example, for both of the cells in Fig. 6, the weightso that
V (i, j)

(i11, j11) is negative.
Sometimes it is desirable to use the algorithm presentedD †M U 5 0. (5.20)

here with grids that have some severely distorted cells.
This can be done by introducing new weightsThen Eq. (4.9) gives

U(i, j) 2 U(i21, j) 5 0, i 5 1, ..., M; j 5 1, ..., N 2 1;
Ṽ (i, j)

(i1k, j1l) 5
uV (i, j)

(i1k, j1l)u
o1

p,q50 uV (i, j)
(i1p, j1q)u

, (5.21)
U(i, j) 2 U(i, j21) 5 0, i 5 1, ..., M 2 1; j 5 1, ..., N.
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which are always positive, and consequently, no singularity grids many methods are comparable to the support-
operators method, but for rough grids or discontinuousexists in the formulas in the support-operators formulation.

Formula (5.21) produces positive weights, even for grids diffusion coefficients the support-operators method is
superior.with self-intersecting meshes, but where all cells still have

positive total volume VC(i, j) . For convex cells, the areas The asymptotic error Eh on a grid of M 3 N nodes is
estimated byof all triangles are positive and the sum of their areas

equals twice the area of VC(i, j) , so these formulas give
the same values as the original formulas. For grids with iEhi 5 Chq 1 O(hq11), (6.1)
nonconvex cells, the new weights produce an S that is
symmetric and positive-definite, and thus the iterative

where h 5 maxh1/(M 2 1), 1/(N 2 1)j, q is the order ofsolver is stabilized. The numerical examples show that
the truncation error, the convergence-rate constant C isthe results of the stabilized algorithm are reasonable.
independent of h, and i · i is some norm. In the numericalClearly, if the weights are defined by (5.21), then the finite-
examples, the asymptotic errors were evaluated on a se-difference scheme is no longer exact for linear functions
quence of grids with h, h/2, h/4, ... and then the order ofif there are nonconvex cells in the grid.
convergence q is estimated by q P log2iEhi/iEh/2i . TheIt is important to note that for hourglassing, the mesh
exact solution is discretized using the point projection op-is still convex, so the algorithm presented here is not sensi-
erator (5.5). The convergence rates can be estimated usingtive to this distortion as is the one presented in [22].
both the maximum norm,There is an alternative approach—subdivide the non-

convex cells into triangles with positive volumes and then
introduce the values of U at the centers of each triangle Emax 5 iU 2 phuimax 5 max

(i, j)
uU(i, j) 2 (phu)(i, j)u ,

and an additional flux on their common boundaries. Since
this procedure requires special differencing for each non-

and the mean-square norm,convex cell and, also, is not fully compatible with Lagran-
gian hydrodynamics, where there is just one U per cell,
the details are not presented here. E 2

L2
5 iU 2 phui2

L2 (6.2)
6. NUMERICAL EXAMPLES

5SOM21

i51
ON21

j51
(U(i, j) 2 (phu)(i, j))2VC(i, j)D ,

First, the algorithm was tested on smooth grids to con-
firm its second-order convergence rate (see [32] for de-
tails). In 1992, Morel et al. [22] developed a scheme that where U(i, j) 5 U n

(i, j) is the solution of the finite-difference
is applicable to the types of problems we are interested in scheme and u 5 u(x, y, t) is the exact solution of the
and show that it is better than all other known schemes given problem.
that are compatible with Lagrangian hydrodynamics

THE STANDARD TEST PROBLEM. The standard testcodes. Thus, the first three examples compare the support-
problem is the diffusion equation in the unit square 0 #operators method to that of [22]. The first example shows
x, y # 1. One-dimensional test problems are extended tothat the support-operators method is better than Morel’s
two dimensions by changing the one-dimensional diffusionmethod on the highly irregular Kershaw grid. The second
operator to a two-dimensional one. The symmetry of theexample demonstrates a second-order convergence rate on
heat equation and the boundary conditions will then implyrandom grids. The third example shows that the support-
that the solution is only one-dimensional. The equation tooperator method is better than Morel’s method on the
be solved is the diffusion equationhighly distorted Shestakov grid which has some nonconvex

cells. The fourth example demonstrates the performance
of the positive weights on a strongly nonconvex grid.

The last three examples check the performance of the
1
v

­u
­t

5
­

­x FD
­u
­xG1

­

­y FD
­u
­yG1 f, (6.3)

support-operators method on problems with discontinuous
conductivity. The fifth and seventh examples have linear
solutions, so the support-operators method is exact for where D is the diffusion coefficient, v is the capacity, and

f is the source term. The notation is chosen to be consistentthese problems, while the sixth example demonstrates a
second-order convergence rate. The last example is excep- with Morel et al. [22], where v is the particle speed and u

is the intensity.tionally important as it demonstrates the accuracy of the
support-operators method on a problem with discontinu- The standard boundary conditions are that there is

zero flux through the top and bottom boundaries andous tangential flux at an interface. In summary, for smooth
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FIG. 7. Example 1: Kershaw Grid.

mixed or Robin boundary conditions on the left and oped here performs better than Morel’s algorithm on the
test problems from [22].right boundaries:

The first test problem is given by (6.3) and (6.4) with
v 5 300, D 5 d;A , and f 5 0, which has 1D linear steady-
state solution u 5 (x 1 2D)/(1 1 4D). As in [22], thisD

­u
­y

5 0 at y 5 0 D
­u
­y

5 0 at y 5 1

u 2 2D
­u
­x

5 0 at x 5 0 u 1 2D
­u
­x

5 1 at x 5 1
. (6.4) problem was solved on the Kershaw grid, which is shown

in Fig. 7. Because the support-operators scheme is exact
for linear functions, it must, as it does, reproduce the
steady-state solution exactly for any grid with convex cells.

The standard initial condition is u(x, y, 0) 5 0. In some For M 5 N 5 9, the lines connecting the cell centers and
examples D is a function of the spatial variable, so it cannot the isolines of the solution, which must be vertical straight
be moved outside of the derivatives. lines, are shown in Fig. 7. The scheme proposed in [22] is

also exact for linear functions on the Kershaw grid, but
6.1. Comparison with Morel’s Method the other schemes mentioned in this paper, except the

scheme from [1], are not exact for this problem.In [22], Morel et al. show that their algorithm gives better
results than the algorithms proposed by Kershaw [14] and Because of the symmetry of the problem, the isolines

of the time-dependent solution must also be verticalsome other algorithms known from literature. Therefore,
we will show that the support-operators algorithm devel- straight lines. The isolines of the approximate solution at
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TABLE I

Example 2: Errors on a Random Grid

Max L2 Relative
Algorithm M norm norm L2 qmax q2 q̃2

Morel et al. 10 4.36E-2 1.79E-2 1.51E-2 2.06 1.95 1.96
20 1.04E-2 4.61E-3 3.88E-3 1.60 1.70 2.01
40 3.43E-3 1.41E-3 9.63E-4 — — —

Support 10 4.34E-2 1.87E-2 1.59E-2 2.04 2.20 1.96
operators 20 1.05E-2 4.06E-3 4.06E-3 1.72 1.79 2.02

40 3.18E-3 1.17E-3 1.00E-3 — — —

presented in Table I, where the first column gives the
algorithm, the second gives the number of grid points withFIG. 8. Example 2: Random Grid, M 5 N 5 21.
N 5 M, the next three columns give the maximum, mean-
square, and the relative mean-square error, and the final
three columns give the estimated orders of convergence.
The results for the support-operators method are very closet 5 0.01 are shown in Fig. 7. Because the exact solution
to the results for Morel’s method. Both methods have afor t 5 0.01 is not linear, the support-operators method is
second-order convergence rate in all norms, and the errornot exact, and thus the isolines exhibit some small distor-
is very close to that obtained on the orthogonal grid totion. Comparison with Morel’s method shows that the dis-
which the random perturbation was applied. It is showntortions cannot be distinguished visually. The Kershaw
in [22] that Kershaw’s [14] and Pert’s [25] methods do notmethod gives very distorted solutions [22] for this problem.
converge on such grids.

6.3. The Shestakov Grid6.2. Random Mesh Example

To complete the comparison with [22], the results of theThe second test problem is given by (6.3) and (6.4)
computation of the stationary linear solution of Eq. (6.3)with v 5 300, D 5 d;A , and f 5 Qx2 with Q 5 1, which is
on the Shestakov grid, which is shown in Fig. 9, are given.just like the first test problem, except now there is a
This grid has three nonconvex cells. The isolines for theforcing term. The steady-state solution of this problem is
results obtained by Morel’s method and results obtainedu 5 a 1 bx 1 cx 4, where
by support-operators method, when the modified positive
weights (5.21) are used, are also given in Fig. 9. Recall
that, in this case, the support-operators scheme is no longer

a 5
Q
6 F1 1 8D

1 1 4DG, b 5
Q

12DF1 1 8D
1 1 4DG, c 5 2

Q
12D

. (6.5) exact for linear functions. The isolines are significantly
straighter for the support-operators method. The errors
for both methods are shown in Table II. The errors show
that the support-operators method is approximatelyAs in Morel et al. [22], this problem is used to demon-
10 times more accurate in the max norm and approximatelystrate the accuracy of the support-operators algorithm as
20 times more accurate in the L2 norm than Morel’sa function of the mesh size on ‘‘random’’ meshes. An
method.example is shown in Fig. 8. This mesh was generated from

a uniform orthogonal mesh by randomly displacing each
interior node by 20% of the original cell width. Specifically,
given an initial uniform cell width of w, each node is placed TABLE II
at a random position on a circle of radius 0.2w, centered

Example 3: Errors on the Shestakov Grid
about the original position of the corner. Note that such

Norm Morel et al. Support operatorsgrids satisfy the regularity condition for general grids
formulated in Section 3.1. Because Morel et al. [22] use

Max-norm 1.01E-2 1.12E-3a relative mean-square norm, this norm of the error is
L2 norm 2.00E-3 1.07E-4

also computed. Morel et al. L2 norm 2.98E-3 1.95E-4
Results of the convergence tests on random grids are



SOLVING DIFFUSION EQUATIONS 401

FIG. 9. Example 3: Isolines on the Shestakov grid.

6.4. A Strongly Nonconvex Grid not convex, that is, when some of the weights in (3.7)
are not positive. The main drawback of the negative

This test demonstrates the impact of using the positive
weights is that the iterative method, used to solve the

weights (5.21) in the inner product on the accuracy of
system of linear equations, may not converge. The draw-the support-operators method. The tests are made using
back of using a modified positive weight is that thethe heat equation (6.3) and the boundary conditions
method is no longer exact on linear solutions, while the(6.4) used in the first problem in this section and the
advantage is that the matrix is positive definite and thengrid displayed in Fig. 10. Most of the cells in this grid
many iteration methods will always converge.are nonconvex. The coordinates of the grid nodes are

obtained by changing the coordinates of two nodes of
the uniform 4 3 4 grid as follows: x2,3 5 Al; y2,3 5 Kl; 6.5. A Discontinuous Coefficient Problem
x3,2 5 Af; y3,2 5 SdD;. The isolines for the approximate

The diffusion coefficient D in the first problem, givensolution for both the case of positive and the case of
negative weights are shown in Fig. 10, which shows that by (6.3) and (6.4), is now changed to a discontinuous
using positive weights can lead to the loss of accuracy piecewise-constant function:
in the case when there are many nonconvex cells, and
the use of the negative weights gives a much better solu-
tion.

This test also shows that the support-operators method D 5HD1 , 0 , x , 0.5,

D2 , 0.5 , x , 1.
(6.6)

is exact for linear solutions even when the grid cells are
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FIG. 10. Example 4: Isolines on the nonconvex grid.

In this case, the left and right boundary conditions are
u 2 2D1

­u
­x

5 22D1b1 ,

(6.9)
taken to be

u 1 2D2
­u
­x

5
a2

2
1 b2 1 c2 1 2D1(a2 1 b2 ).u 2 2D1

­u
­x

5 0, u 1 2D2
­u
­x

5 1, (6.7)

The exact stationary 1D solution isand then the steady-state solution of this problem is

u(x) 5 5 a1
x2

2
1 b1x, 0 # x #

1
2

,

a2
x2

2
1 b2x 1 c2 ,

1
2

# x # 1,
(6.10)u 5 5

D2x 1 2D1D2

0.5(D1 1 D2) 1 4D1D2
, 0 , x , 0.5,

D1x 1 2D1D2 1 0.5(D2 2 D1)
0.5(D1 1 D2) 1 4D1D2

, 0.5 , x , 1,
(6.8)

wherewhich is a piecewise linear function. In the case when
D1 5 D2 5 D, this solution is the same as for the first
test problem.

ai 5
21
Di

, b1 5 2
3a2 1 a1

4
D2

D1 1 D2
,

(6.11)
This problem was solved on the 2D random grid shown

in Fig. 11. The support-operators method is more accurate
if the discontinuity coincides with a grid line, so the line b2 5

D2

D1
b1 , c2 5 2(b2 1 0.5a2 ).

with x 5 As is fixed, but the y coordinates of points on
this line are changed randomly. As expected, the support-

The convergence analysis is presented in Table III, whereoperators scheme is exact for this problem; the isolines of
the data is arranged as in Table I. It is clear that thethe approximate solution are shown in Fig. 11. Note that
convergence rate is second order in both the max andMorel’s method is also exact for this problem.
L2 norms.

6.6. MacKinnon and Carey Example
6.7. Discontinuous Tangential Flux

The next test problem is from MacKinnon and Carey
[19] and is the same as (6.3) and (6.4), except that the left All of the examples that we know of in the literature

have both the normal and tangential components of fluxand right boundary conditions are
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FIG. 11. Example 5: Discontinuous coefficient, M 5 N 5 17.

continuous at any discontinuity. However, the theory for The numerical experiments use a 5 b 5 c 5 1, k1 5 d;A ,
k2 5 d;A;, and the smooth grid given by the transformationdiscontinuous coefficients only implies that the normal

component of flux is continuous. In fact, it is to be expected
that the tangential component of flux is not continuous, x(j, h) 5 j 1 « sin(2fj) sin(2fh),
as illustrated by the following simple (but important) exam-

y(j, h) 5 h 1 « sin(2fj) sin(2fh),
ple by Morel.

For this example the diffusion constant is chosen as
with « 5 0.1. For this transformation, the grid line cor-
responding to j 5 0.5 is a straight line and coincides with
the interface. It is important that the transverse grid lines
are not orthogonal to this interface.

k(x, y) 5 5k1 , x #
1
2

,

k2 , x .
1
2

,
. The support-operators algorithm is exact for this prob-

lem because the solution is piecewise linear (see [32, 13]).
Many other algorithms will have difficulties with this prob-
lem. For example, the errors for the method of Beek,

A solution that has the discontinuity in the tangential flux Nooyen, and Wesseling [1] are presented in Table IV. The
at a discontinuity (interface) at x 5 0.5 is first column is the number of cells, the second and third are

the max norm of the errors for the normal and tangential
components of flux and the last column is the max error
of the solution. It is clear from this data that the error in

u(x, y) 5 5 a 1 bx 1 cy, x #
1
2

,

a 1 b
k1 2 k2

2k2
1 b

k1

k2
x 1 cy, x .

1
2

,
the solution is essentially independent of the number of
nodes. Thus, this method cannot be used for problems
which involve strongly discontinuous media and nonor-
thogonal grids.

This solution and its normal component of flux are continu- This lack of convergence is due to an unremovable error
ous at x 5 As, while tangential component of flux is k1c on which depends on the nonorthogonality of the grid near
the left side of the interface and k2c on the right side of the interface. The derivation of the method in [1] assumes
the interface. that the flux vector is continuous at the interface; that is,

TABLE IVTABLE III

Example 6: Errors for the MacKinnon Problem Example 7: Errors for van Beek et al. Method

M-1 Max norm L2-norm qmax q2 M EGj EGh Eu

10 4.62E-4 1.98E-2 1.35E-210 5.98E-2 3.40E-2 1.88 1.99
20 1.62E-2 8.54E-3 1.98 1.96 20 2.77E-4 2.94E-2 1.28E-2

40 1.50E-4 3.24E-2 8.88E-340 4.10E-3 2.18E-3 — —
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